
VIPER Project N91-17573

John Kershaw

Royal Signals Radar Establishment

Malvern, England

The VIPER project has so far produced a formal specification of a 32 bit

RISC microprocessor, an implementation of that chip in radiation-hard SOS

technology, a partial proof of correctness of the implementation which is

still being extended, and a large body of supporting software. The time
has now come to consider what has been achieved and what directions should

be pursued in future.

The most obvious lesson from the VIPER project has been the time and effort

needed to use formal methods properly. Most of the problems arose in the

interfaces between different formalisms e.g. between the (informal) English

description and the HOL spec, between the block-level spec in HOL and the

equivalent in ELLA needed by the low-level CAD tools. These interfaces

need to be made rigorous or (better) eliminated.

VIPER IA (the latest chip) is designed to operate in pairs, to give

protection against breakdowns in service as well as design faults. We have

come to regard redundancy and formal design methods as complementary, the

one to guard against normal component failures and the other to provide

insurance against the risk of the common-cause failures which bedevil

reliability predictions.

Any future VIPER chips will certainly need improved performance to keep up

with increasingly demanding applications. We have a prototype design (not

yet specified formally) which includes 32 and 64 bit multiply, instruction

pre-fetch, more efficient interface timing, and a new instruction to allow

a quick response to peripheral requests. Work is under way to specify this

device in MIRANDA, and then to refine the spec into a block-level design by

top-down transformations. When the refinement is complete, a relatively

simple proof checker should be able to demonstrate its correctness.

/

Example of NODEN output

The NODEN aIlalysis suite I)rovi(tes automatic com-
1)arison between tile st)ecification arid design of moder-
ately c,omt)lex I)locks of logic. The following example
is taken from tile VIPER. design. MINOR is the sun-

)lest block in the chit), essentially consisting of a three
it counter. Following this paragraph is its specification

in NODEN-HDL, whilst oil the following pages are a cor-
rect and incorrect inq)lementation. The final page shows
tlJ(; outl)ut of the coml)arison program when presented
with the erroneous ('ircuit.

\ ** MINOR STATE LOGIC in NODEN ** \

FN INCWORD3 = (word3: minor) -> word3:

IF (VAL3 minor) = 7

THEN WORD3 0

ELSE WORD3((VAL3 minor)+1)

FI.

BLOCg MINOR = (bool: nextmainbar advance

reset intresetbar)

-> ('word3: minor):

IF reset OR (NOT intresetbar) OR

(advance AND (NOT nextmainbar))

THEN WORD3 0

ELIF advance

THEN INCWORD3 minor

ELSE minor

FI.

\ **** 'Library' of primitive gate functions **** \

FN INV =(bool: a) -> bool: NOT a.

FN NAND2=(booI: a b) -> bool: NAND(a,b).

FN EXNOR=(booI: a b) -> bool: a = b.

FN ORNAND=(booI: a b c d) -> bool: NAND(a OR b,c OR d).

\ NB. NAND3 & NAND4 are built-in functions \

\ **** Correct gate level implementation **** \

BLOCK MINOR = (boo1: nextmnbar advance reset intrstbar)

-> ('word3: minor):

BEGIN

LET qbar_1 := NOT (minor[I]),

qbar_2 := NOT (minor [2]) ,

qbar_3 := NOT (minor [3]) .

LET gb2

LET gb4

LET gbl

LET gb3

LET gb7

LET gb8

•= INV(advance).

:= INV(reset).

•= NAND4(nextmnbar,advance,gb4,intrstbar).

:= NAND3(Eb2, gb4, intrstbar).

:= INV(qbar_l).

:= EXNOR(qbar_1, qbar_2).

LET gb11 "= INV(qbar_2).

LET gb12 := NAND2(gbT, gb11).

LET gb13 := EXNOR(gb12, qbar_3).

OUTPUT (ORNAND(gbT,

END.

gbl, gb3, qbar_l),

ORNAND(gb8, gbl, gb3, qbar_2),

ORNAND(gbI3, gbl, gb3, qbar_3)

)

\ **** Wrong gate level imp1ementatlon **** \

BLOCK M_ERR = (bool: nextmnbar advance reset intrstbar)

-> ('word3: minor):

BEGIN

LET qbar_l := NOT (minor[l]),

qbar_2 := NOT (minor [2]) ,

qbar_3 := NOT (minor [3]).

LET gb2

LET gb4

LET gbl

LET gb3

LET gb7

:= INV(advance).

•= INV(reset).

• - NAND4(nextmnbar,advance,gb4,intrstbar).

:= NAND3(gb2, gb4, intrstbar).

•= INV(qbar_l).

\ ** Inverted qbar_2 ** \

LET gb8 := EXNOR(qbar_l, NOT qbar_2).

LET gbll "= INV(qbar_2).

\ ** Missing NAND with gb7 ** \

LET gbl2 :- gbll.

LET gb13 := EXNOR(gb12, qbar_3).

\ ** Inverted first output ** \

OUTPUT (NOT(ORNAND(gbT, gbl, gb3, qbar_l)),

ORNAND(gbS, gbl, gb3, qbar_2),

ORNAND(gbI3, gbl, gb3, qbar_3)

)

END.

PRECEDING PAGE BLANK NOT FILMED

Specification" 'MINOR' Implementation" 'M_ERR'

COMPARISON ERROR" Implementation output 'minor[l]'

is always incompatible with the specification of

'minor[l]'_ output inverted?

COMPARISON ERROR" Implementation output 'minor[2]'

is incompatible with the specification of 'minor[2]

under the following circumstances--

nextmainbar = t

advance = t

reset = f

intresetbar = t

For specification output 'minor[3]' - implementation

output 'minor[3]' .-

WARNING" Specification depends on minor[l] and

implementation doesn't

COMPARISON ERROR" Implementation output 'minor[3]'

is incompatible with the specification of 'minor[3]

under the following circumstances.-

nextmainbar = t

advance = t

reset = f

intresetbar = t

minor [2] = f

*** Comparison fails, invalid implementation ***

+ +

NODEN changes

• Negative integer subranges allowed

E.g. TYPE i8- INT[-128..127].

• Automatic casts between types

E.g. (t,t,f) + bool3_val-I-i8_val

• 2's compliment []bool to integer ops.

• Explicit legal value, !bool

• Compiler about four times faster.

• Analyer abouttwice as fast.

+

PRECEDII'_G PAGE BLANK NOT FILMED

7

+ +

Old NODEN_HDL

FN INCWORD3

IF (VAL3

THEN

ELSE

FI.

= (word3: minor) -> word3 :

minor) == 7

WOKD3 0

WOKD3 ((VAL3 minor) + I)

New NODEN_HDL

FN INCW0RD3

IF minor

= (word3: minor) -> word3:

== 7 THEN 0 ELSE minor + 1 FI.

Bibliography

Cullyer W.J. and Pygott C.H. 1987: "Application of Formal Methods to the

VIPER Microprocessor", Proc. IEE, 134, 133-141.

Kershaw J. 1987, "The VIPER Microprocessor": RSRE Report 87014.

Pygott C.H.]988: "NODEN: An Engineering Approach to Hardware Verification",

l'r(_c. W(_rk,h_p on the fu_(,tt L_f ha,(|war_ design and v,,_icatio,_, _(|. Mi]ne.

N_,1t.h It,',] land.

Mox *son ,] l_, Peeling N E, Thorp T I,, 1985: "The design z'ationa]e of ELLA,

n hardwart, dos.[gn and dosczipt_on Janguage", Proceedil,gs of the Conference

,,It Hardwa,, Descriptioi,],anquagea a,td th4_ir applicat:ions, Tokyo, Japan.

Halbert M.P. 1987:

mJ croprocessor",
UK.

"A self-checking computer module based on the VIPER

Proc. Safety & Reliability Society Symposium, Altrincham,

Camilleri A, Gordon M, and Melham T. 1986: "Hardware Verification using

Higher Order Logic", Proc. IFIP International WGI0.2 Working Conference,
North Holland.

Cohn A. 1987: "A Proof of Correctness of the VIPER Microprocessor: the First

Level", Proc. Workshop on the Verification of Hardware, Calgary, Canada.

Kluwer Academic Publishers 1988.

l_rlm,fJtt P..]. et a]. 1987: "A Hardware ._lynthesis Methodology", IEE Colloquium

_,,,VL:;] Sy_t. em Design: SpecifJcati(nl and Synthesis, London, Oct.ober 1987.

(_'UTlit, I.F. 1984: "Orwellian Programming in Safety-Critical Systems", Proc.

Co|tferertc@ on .%'yatent Implementation Languages - Practice and Experience,

Ilctiveze|ity (,f Kent at Canterbury.

Kershaw J: "The VIPER Microprocessor and its use in critical systems"

Software Engineering Journal special issue on Safety Critical Systems

(to be published)."

+ +

Why VIPER2?

• Faster, 32 and 64 bit multiply

• Improved interface to outside world

• New design methods now available

Jr 1

+ +

Extra Speed by ..

• Instruction pre-fetch

• Dedicated adders for P and indexing

• Half-cycle overlaps rather than full cycle

Speed more than 3x at same clock frequency

+ 1 '_

F

4- 4-

On-board Multiply Instructions

Three separate instructions, F- 13, 14, 15

• Signed, 32 bit product, stop on OVF

• Unsigned, LS 32 bits of product

• Unsigned, MS 32 bits of product

4- 1

+
PRECEDING PAGE BLANK NOT FILMED

+

Improved interface

• "Call on signal" instruction

• "Frame restart" input

Longer setup and

memory and I/O

hold times on

cycles

+ 1

+ +

New design methods

Top-down synthesis by

transformations

correctness- prese rv ing

• Starts from specification in MIRANDA

• Generates proof as part of design process

• May scale up better than post hoc proof

+ 4-

VIPER 1A perspective

The present chip

application areas:

falls in between the main

Automotive and comms: too expensive,

minimum system too big (5 memory chips)

• Avionics: not fast enough, no multiply

• Space: about right, tiny market

• 'b

I •

! i
! !

"lk . o •1 [

i

STOP -_

Processor I I

,[
No] Exactly i Y_' .

Equal?
OPERATE

Dependable

Error

Reporting

 VIPER

T

B A-B

- kA
A=B

B

Clock ®

®

FAIL

®

I--..-.-msJor-stste-..--.-(
Active
VIPER ®

® tr, ®

Moni tot
VIPER

®

mem

Timer

I

I

I

I

I

I

!

I

o VIPER

I

I

I

I

Mil 1553/STANAG 3838

